Kamis, 24 Juli 2008


1.2 Ilustrasikan proses kerja pesawat TV (proses kerja secara elektronis)
Objek gambar yang di tangkap lensa kamera akan dipisahkan berdasarkan tiga warna dasar, yaitu merah (R = red), hijau (G = green), biru (B = blue). Hasil tersebut akan dipancarkan oleh pemancar televisi (transmiter). Pada sestem pemancar televisi, informasi visual yang kita lihat pada layar kaca pada awalnya di ubah dari objek gambar menjadi sinyal listrik. Sinyal listrik tersebut akan ditransmisikan oleh pemancar ke pesawat penerima (receiver) televisi.
PRINSIP KERJA TELEVISI
Pesawat televisi akan mengubah sinyal listrik yang di terima menjadi objek gambar utuh sesuai dengan objek yang ditranmisikan. Pada televisi hitam putih (monochrome), gambar yang di produksi akan membentuk warna gambar hitam dan putih dengan bayangan abu-abu. Pada pesawat televisi berwarna, semua warna alamiah yang telah dipisah ke dalam warna dasar R (red), G(green), dan B (blue) akan dicampur kembali pada rangkaian matriks warna untuk menghasilkan sinyal luminasi.Selain gambar, pemancar televisi juga membawa sinyal suara yang di tranmisikan bersama sinyal gambar. Penyiaran telavisi sebenarnya menyerupai suara sistem radio tetapi mencakup gambar dan suara. Sinyal suara di pancarkan oleh modulasi frekuensi (FM) pada suatu gelombang terpisah dalam satu saluran pemancar yang sama dengan sinyal gambar. Sinyal gambar termodulasi mirip dengan sistem pemancaran radio yang telah dikenal sebelumnya. Dalam kedua kasus ini, amplitudo sebuah gelombang pembawa frekuensi radio (RF) dibuat bervariasi terhadap tegangan pemodulasi. Modulasi adalah sinyal bidang frekuensi dasar (base band).Modulasi frekuensi (FM) digunakan pada sinyal suara untuk meminimalisasikan atau menghindari derau (noise) dan interferensi. Sinyal suara FM dalam televisi pada dasarnya sama seperti pada penyiaran radio FM tetapi ayunan frekuensi maksimumnya bukan 75khz melainkan 25 khz.
Saluran dan Standar Pemancar
TelevisiKelompok frekuensi yang di tetapkan bagi sebuah stasiun pemancar untuk tranmisi sinyalnya disebut saluran (chenel). Masing-masing mempunyai sebuah saluran 6 mhz dalam salah satu bidang frekuensi (band) yang dialokasikan untuk penyiaran televisi komersial.VHF bidang frekuensi rendah saluran 2 sampai 6 dari 54 MHZ sampai 88 MHZ.VHF bidang frekuensi tinggi saluran 7 sampai 13 dari 174 MHZ sampai 216 MHZ.UHF saluran 14 sampai 83 dari 470 MHZ sampai 890 MHZ.Sebagai contoh, saluran 3 disiarkan pada 60 MHZ sampai 66 MHZ. Sinyal pembawa RF untuk gambar dan suara keduanya termasuk di dalam tiap saluran tersebut.
JENIS-JENIS SISTEM TELEVISI
Sistem pemancar televisi yang kita kenal di antaranya:NTSC (National Television System Committee)PAL (Phases Alternating Line)SECAM (Sequential Couleur a Memorie)PALBNTSC (National Television System Committee) digunakan di Amerika Serikat, sistem PAL (Phases Alternating Line) di gunakan di Inggris, sistem SECAM (Sequential Couleur a Memorie) digunakan di Perancis. Sementara itu, Indonesia sendiri menggunakan sistem PALB. Hal yang membedakan sistem tersebut adalah format gambar, jarak frekuensi pembawa dan pembawa suara
BAGIAN-BAGIAN TELEVISI
Rangkaian Catu Daya (Power Supply)
Rangkaian berfungsi untuk mengubah arus AC menjadi DC yang selanjutnya didistribusikan ke seluruh rangkaian. Rangkaian catu daya dibatasi oleh garis putih pada PCB dan daerah di dalam kotak merah. Daerah di dalam garis putih adalah rangkaian input yang merupakan daerah tegangan tinggi (live area). Sementara itu, daerah di dalam kotak merah adalah output catu daya yang selanjutnya mendistribusikan tegangan DC ke seluruh rangkaian TV.
Rangkaian Penala (tuner)
Rangkaian ini terdiri dari penguat frekuensi tinggi ( penguat HF ), pencampur (mixer), dan osilator lokal.Rangkaian penala berfungsi untuk menerima sinyal masuk (gelombang TV) dari antena dan mengubahnya menjadi sinyal frekuensi IF.Rangkaian penguat IF (Intermediate Frequency)Rangkaian ini berfungsi sebagai penguat sinyal hingga 1.000 kali. Sinyal output yang dihasilkan penala ( tuner) merupakan sinyal yang lemah dan yang sangat tergantung pada pada sinyal pemancar, posisi penerima, dan bentang bentang alam. Rangkaian ini juga berguna untuk membuang gelombang lain yang tidak dibutuhkan dan meredam interferensi pelayanan gelombang pembawa suara yang mengganggu gambar.
Rangkaian Detektor Video
Rangkaian ini berfungsi sebagai pendeteksi sinyal video komposit yang keluar dari penguat IF gambar. Selain itu, rangkaian ini berfungsi pula sebagai peredam seluruh sinyal yang mengganggu karena apabila ada sinyal lain yang masuk akan mengakibatkan buruknya kualitas gambar. Salah satu sinyal yang di redam adalah sinyal suara.
Rangkaian Penguat
VideoRangkaian ini berfungsi sebagai penguat sinyal luminan yang berasal dari deteltor video sehingga dapat menjalankan layar kaca atau CRT (catode ray tube). Didalam rangkaian penguat video terdapat pula rangkaian ABL(automatic brightness level) atau pengatur kuat cahaya otomatis yang berfungsi untuk melindungi rangkaian tegangan tinggi dari tegangan muatan lebih yang disebabkan oleh kuat cahaya pada layar kaca.
Rangkaian AGC (Automatic Gain Control)
Rangkaian AGC berfungsi untuk mengatur penguatan input secara otomatis. Rangkaian ini akan menstabilkan sendiri input sinyal televisi yang berubah-ubah sehingga output yang dihasilkan menjadi konstan. Rangkaian Defleksi SinkronisasiRangkaian ini terdiri dari empat blok, yaitu rangkaian sinkronisasi, rangkaian defleksi vertikal, rangkaian defleksi horizontal, dan rangkaian pembangkit tegangan tinggi. Rangkaian AudioSuara yang kita dengar adalah hasil kerja dari rangkaian ini, sinyal pembawa IF suara akan dideteksi oleh modulator frekuensi (FM). Sebelumnya, sinyal ini dipisahkan dari sinyal pembawa gambar.
1.3 Identifikasikan standar TV dunia dan HDTV (standar internasional untuk sistem dan tampilan (warna) TV ; teknologi High Definition Television (HDTV))

HDTV adalah merupakan media komunikasi baru dan teknologinya masih dalam proses penggarapan yang sangat ramai, terutama pada awal dekade ini. Secara singkat sejarah perkembangan HDTV dimulai oleh Jepang yang dimotori oleh pusat riset dan pengembangan NHK (TVRI/RRI-nya Jepang) pada tahun 1968, kemudian diikuti oleh Masyarakat Eropa sebagai pembanding dan akhirnya Amerika Serikat menjadi competitor yang harus diperhitungkan.
Diperkirakan bahwa teknologi HDTV ini akan menjadi standar televisi masa depan, sehingga seorang peneliti senior dalam bidang sistem strategi dan manajemen Dr. Indu Singh meramalkan bahwa pasar dunia untuk HDTV ini akan mencapai 250 billion dolar pertahun (tahun2010). Untuk itu pada dekade tahun 1990 ini negara-negara maju telah dan sedang berusaha agar bisa membuat teknologi tersebut sehingga bisa menguasai pasar dunia (posisi strategis).

Apa itu HDTV ?
HDTV dapat diartikan sebagai suatu sistem media komunikasi bergambar dan atau bersuara dengan tingkat kualitas ketajaman gambar (resolusi) yang sangat tinggi (hampir sama dengan kualitas film 35-mm)dan kualitas suaranya juga menyerupai CD (Compact Disk). Dalam hal ini teknologi pemrosesan sinyal dijital dan displai memberikan peran yang sangat penting. Diharapkan juga bahwa nantinya bisa melayani multi-bahasa dan multi media. Karena HDTV merupakan sistem komunikasi, maka seperti juga sistem komunikasi konvensional, untuk penyelenggaraannya memerlukan beberapa komponen dasar seperti pusat produksi (studio), pemroses/penyimpan. sistem transmisi dan pesawat penerima. Sistem Siaran Ideal Untuk dapat menyelenggarakan sistem siaran HDTV baik secara nasional maupun global yang ideal, diperlukan beberapa kriteria antara lain sebagai berikut :
- Penggunaan sinyal standar yang sama (di dunia /dalam satu negara)
- Biaya pesawat penerima yang murah /terbeli oleh khalayak
- Kompatibel dengan sistem yang sudah ada
- Bisa dihubungkan dengan media lain (multi-media)
- Dapat terjangkau secara meluas (aspek pemerataan)

Kompetisi Standar
Disamping aspek pasar yang menggiurkan, dalam sistem penyelenggaran HDTV yang global mempunyai dampak yang luas pada bidang budaya, sosial politik sampai pada pertahanan. Karena itu negara-negara maju telah berlomba agar sistem yang mereka kembangkan itu nantinya dapat dipakai sebagai standar dunia (global). Standar yang telah masuk dalam agenda rapat CCIR( badan internasional yang menangani standarisasi sistem penyiaran), baru dua yaitu MUSE (Jepang) dan HD-MAC (Eropa). Sementara itu Amerika Serikat yang diatur oleh FCC (Komisi Komunikasi) sedang ditegangkan untuk memutuskan satu standar dari masing-masing team (konsorsium) yang sedang berkompetisi. Karena kepentingan masing-masing negara yang berbeda-beda apakah CCIR bisa memutuskan pemakain standar yang tunggal ? Pengalaman dari sistem TV konvensional yaitu adanya PAL/SECAM di Eropa & ASEAN, NTSC di Amerika dan Jepang, rasanya sulit CCIR untuk bisa memutuskan pemakaian tunggal sistem penyiaran HDTV ini. Disamping itu juga ada badan standarisasi dibawah ISO yaitu MPEG (Kompas 25 April 1993, penulis yang sama) yang menangani standarisasi pengkodean dan pemampatan sinyal gambar bergerak. Untuk sinyal gambar dengan ketajaman tinggi (HDTV), sampai saat ini belum ada kesepakatan dan direncanakan diselesaikan pada tahun 1995.

Negara Berkembang
Setiap negara tentu saja menginginkan bahwa negaranya bisa maju dalam segala hal, termasuk teknologi HDTV. Bagi negara maju yang infrastrukurnya sudah lengkap yang menjadi masalah penerapan adalah kompetisi. Namun demikian bagaimana dengan negara berkembang yang infrastrukturnya masih terbatas (lihat idealisasi sistem siaran diatas), apakah mau menciptakan standar sendiri ataukah mengikuti standar yang sedang dikembangkan oleh bangsa maju dan kapankah HDTV tersebut layak diterapkan?
Karena tingkatan teknologi HDTV yang ada sudah demikian maju kemungkinan membuat standar sinyal sendiri hanyalah membuang waktu dan dana. Namun demikian kalau mengikuti standar lain harus bagaimanakah?
Pertanyaan berikutnya lalu standar mana yang harus dipakai ? MUSE, HD-MAC atau ADTV-nya Amerika.
Untuk menjawab pertanyaan ini dan sekaligus menyelesaikan persoalan-persoalan idealisai sistem penyiaran diatas kiranya diperlukan strategi dan pentahapan yang terpadu. Karena teknologi HDTV tidak semata-mata teknologi televisi saja, maka demi keterpaduan sebaiknya di dalam pengkajian , maupun pengembangannya dilakukan oleh beberapa instansi dan industri yang terkait, seperti Telekomunikasi (TELKOM), Perguruan Tinggi, Pengkajian Teknologi (BPPT,LIPI), Industri elektronika(INTI, LEN,National, Elektrindo) , Kementrian Industri dan Perdagangan (Indag), dsb-nya.
Sebagai contoh keterpaduan yang dilakukan di Jepang untuk pengembangan industri televisi yang dimulai dekade 50. Dengan dimotori oleh Pusat Riset dan Pengembangan NHK, Jepang memaksa industri-industri dalam negeri (SONY, Matsuhita, dll) untuk bisa memproduksi Televisi dan komponen terkait dengan orientasi mula pasar dalam negeri.
Dengan dilaksanakan siaran secara langsung melalui media televisi upacara pernik
ahan kaisar (emperor) Akihito pada tahun 1959, meledaklah industri televisi di Jepang . Akhirnya seperti kita ketahui dengan baik bahwa Jepang telah bisa merajai teknologi televisi dan pasar dunia. , bahkan telah berhasil menayangkan program HDTV 8 jam sehari (mulai 25 Nopember 1991). Yang menjadi harapan Jepang selanjutnya adalah bahwa pasaran Hi- Vison-nya (HDTV) akan meledak pada pernikahan mahkota berikutnya Naruhito dengan MasakoOwada pada bulan Juni ini. Namun ini masih menjadi pertanyaan karena harganya masih mahal (1.0 juta yen), sehingga sampai akhir Mei ini jumlah pesawat penerimanya baru sekitar 10.000. Para peneliti Jepang sedang berusaha habis-habisan untuk bisa mengeffisienkan komponen IC-nya sehingga diharapkan harganya menjadi murah. Contoh lain adalah Korea Selatan, mereka tidak terburu-buru mengadakanpenyelenggaraan-nya disaat standar belum mapan, namun yang mereka kejar adalah bagaiamana memproduksi HDTV untuk bias di ekspor, sehingga mereka mengirimkan ahli-ahli-nya yang bisa membuat HDTV ke Jepang , Eropa, Amerika. Kegiatan ini adalah merupakan konsorsium dari pemerintah dan industri-industri terkait seperti Golden Star, Samsung , Daewo, Korean Telocom dsb-nya. Proyek pengembangan produksi HDTV di Korea ini dimulai sejak tahun 1989, dengan biaya 100 milyar won, 60 prosen diantara-nya dikeluarkan dari kocek pemerintah. Target yang mereka harapkan adalah, konfigurasi dasar(prototipe) akan selesai dilaksanakan pada tahun 1993, sedangkan secara ambisius pada tahun 1995 nanti bisa membuat produksi secara masal. Kelihatannya sangat netral dan beralasan sekali ,saran seorang mantan peneliti dari NHK yang sekarang menjadi guru besar di salah satu perguruan tinggi di Jepang, yang menyatakan bahwa kalau negara berkembang ingin mengembangkan sistem siaran HDTV, maka yang perlu dibenahi dulu antara lain adalah , perbanyaklah ahli elektronika (pendidikan) dan yang terkait sehingga bisa membuat , menjalankan dan memasarkan industri elektronika secara mandiri. Menurut beliau kalau ni dikerjakan mulai sekarang dengan kerja keras (Gambate /bahasa Jepang), mudah-mudahan penyelenggaraan sistem siaran HDTV ini bisa dilaksanakan dalam kurun 10 tahun yang akan datang.

TugaZ p. mOKo

1.4 Ilustrasikan proses alir kerja pemancar TV (frekuensi pengantar gelombang TV (UHF/VHF); proses alir kerja pemancar TV ; jenis pemancar TV berdasarkan area cakupan pancarannya(coverage area)..

PEMANCAR TELEVISI VHF DAN UHF

A. Kualitas Penerimaan Siaran Televisi
Besarnya signal penerimaan siaran televisi disuatu tempat dipengaruhi beberapa parameter dari stasiun pemancar yang meliputi antara lain :
1. Daya pancar
2. Gain dan sistem antena pemancar
3. Jarak lokasi pemancar dengan lokasi penerimaan
4. Frequency saluran yang digunakan
5. Gain dan antena sistem dari pesawat penerima
6. Profile chart antara antena pemancar dengan antena pesawat penerima
7. Ketinggian lokasi pemancar terhadap lokasi penerima

B. Daya Pancar
Kiranya semua orang tahu bahwa besarnya daya pancar, akan mempengaruhi besarnya signal penerimaan siaran televisi disuatu tempat tertentu pada jarak tertentu dari stasiun pemancar televisi. Semakin tinggi daya pancar semakin besar level kuat medan penerimaan siaran televisi. Namun demikina besarnya penerimaan siaran televisi tidak hanya dipengaruhi oleh besarnya daya pancar.

C. Gain Antena
Besarnya Gain antena dipengaruhi oleh jumlah dan susunan antena serta frequency yang digunakan. Antena pemancar UHF tidak mungkin digunakan untuk pemancar TV VHF dan sebaliknya, karena akan menimbulkan VSWR yang tinggi. Sedangkan antena penerima VHF dapat saja untuk menerima signal UHF dan sebaliknya, namun Gain antenanya akan sangat mengecil dari yang seharusnya.

D. Path Loss (redaman Ruang)
Path Loss dapat diartikan sebagai redaman propagasi, yaitu besarnya daya yang hilang dalam menempuh jarak tertentu. Besarnya redaman disamping ditentukan oleh kondisi alam seperti tidak adanya halangan antara pemancar dengan penerima dan kondisi altitude dari masing-masing lokasi maupun antara kedua lokasi, redaman sangat dipengaruhi oleh jarak antara pemancar dengan penerima dan frekwensi yang digunakan. Dengan tanpa memperhitungkan kondisi alam dan lokasi dimana pemancar dan penerima berada, besarnya Path Loss dapat dihitung dengan menggunakan rumus “Free Space Loss” sebagai berikut :A pl(db) = +32,5(db) +(20 log D (km))(db) + (20 log F (Mhz))(db)

E. Kebutuhan Daya Pancar
Besarnya daya pancar yang diperlukan untuk menjangkau sasaran pada jarak tertentu dipengaruhi antara lain oleh besarnya frekwensi, ketinggian antena pemancar dan antena penerima serta profile antara lokasi pemancar dengan lokasi penerima, serta besarnya level kuat medan yang diharapkan dapat diterima oleh pesawat penerima. Besarnya level kuat medan penerimaan siaran televisi untuk frekwensi band tertentu, CCIR/ ITU-R memberikan rekomendasi yang dapat digunakan sebagai referensi, namun demikina di setiap negara dapat saja memiliki kebijaksanaan tersendiri tentang kualitas penerimaan siaran televisi yang dikaitkan dengan persyaratan kuat medan minimum. Sampai saat ini di Indonesia belum ada kebijaksanaan khusus mengenai persyaratan minimum kuat medan pancaran siaran televisi yang harus dipenuhi untuk suatu penerimaan siaran televisi yang dianggap baik. Sementara itu, untuk kebutuhan perencanaan pengembangan perluasan jangkauan digunakan rekomendasi CCIR/ ITU-R sebagai acuan. Dibawah ini sebagai contoh disampaikan daftar kuat medan minimum menurut rekomendasi CCIR dan daftar kuat medan minimum yang digunakan oleh negara Australia.Untuk menganalisa perbedaan kebutuhan daya pancar antara pemancar VHF dengan UHF dapat dilakukan dengan menggunakan perhitungan propagasi gelombang pada “free space” ataupun menggunakan chart/ grafik propagasi yang disusun oleh CCIR serta dengan memegang variabel-variabel tertentu dalam kondisi yang sama. Pada kesempatan ini marilah kita lakukan perhitungan dengan menggunakan rumus propagasi gelombang pada “free space” dengan variabel-variabel yang dipegang tetap yaitu sebagai berikut :1. Jarak pemancar dengan penerima = 20 Km2. Antara pemancar dan penerima tidak ada halangan/ obstacle dan ketinggian antena pemancar dan penerima tidak diperhitungkan3. Frekwensi VHF = 200Mhz dan UHF = 500Mhz4. Pfs = Field strength untuk VHF = 75dbuV/m = -30dBm/Z = 50Ohm5. Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm 6. Gant = Gain antena = 10dB7. Po = power output pemancarPo(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db)Dengan data sebagaimana tersebut diatas, dapat dihitung kebutuhan power output VHF yang dapat menjangkau sasaran sejauh 20Km adalah sebagai berikut :Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db) Po(db) = -32bdm – 10db + 32,5db + 20log20 + 20log200 Po(db) = -32bdm – 10db + 32,5db + 26db + 46db Po(db) = 62,5 dbm = 2,5dbk = 1,8KW



Sedangkan untuk pemancar UHF diperlukan power output sebesar :Po(db) = Pfs(db) – Gant(db) + 32,5(db) + (20logD(km))(db) + (20logF(Mhz))(db) Po(db) = -27bdm – 10db + 32,5db + 20log20 + 20log500 Po(db) = -27bdm – 10db + 32,5db + 26db + 54db Po(db) = 75,5 dbm = 15,5dbk = 35KW Apabila dilakukan perhitungan dengan menggunakan grafik rumus propagasi gelombang pada “free space” dengan variable-variable yang dipegang tetap yaitu sebagai berikut :1. Jarak pemancar dengan penerima = 20Km2. Antara pemancar dan penerima tidak ada halangan/ obstacle3. Ketinggian antena pemancar = 150meter, dan ketinggian antene penerima penerima = 10meter4. Pfs = Field strength untuk VHF = 75dbuV/m = -32dBm/Z = 50Ohm5. Pfs = Field strength untuk UHF = 80dBuV/m = -27dBm/Z = 50Ohm 6. Gant = Gain antena = 10dB7. Po = Power output pemancarDengan data sebagaimana tersebut diatas dan dengan menggunakan standard CCIR, besarnya daya pancar dapat dihitung sebagai berikut :1. Perhitungan Daya Pancar Pemancar VHF,Dengan menggunakan grafik pada gambar 1, dapat dijelsakan bahwa dengan 1 Kw atau 0dbk ERP pada jarak 20Km dengan ketinggian antena pemancar 150 meter dapat diperoleh field strength sebesar 63dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 75dbuV/m pada jarak 20Km diperlukan ERP sebesar 12dBk dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar VHF yang diperlukan sebesar 2dBk atau 1,58KW2. Perhitungan Daya Pancar Pemancar UHF,Dengan menggunakan grafik pada gambar 2, dapat dijelaskan bahwa dengan 1 KW atau 0dbk ERP pada jarak 20Km denagn ketinggian antena pemancar 150 meter dapat diperoleh Field Strength sebesar 61dbuV/m. Dengan demikian dapat dinyatakan bahwa untuk mendapatkan field strength sebesar 19dbk, dan dengan menggunakan antena pemancar dengan Gain 10dB, power output pemancar UHF yang diperlukan adalah sebesar 9dbk atau 8KW Dari uraian tersebut diatas dapat disampaikan bahwa untuk mendapatkan kualitas penerimaan gambar dan suara yang baik pada jarak yang sama diperlukan daya pancar yang lebih tinggi apabila menggunakan pemancar UHF dari pada apabila menggunakan pemancar VHF.

F. Biaya Investasi
Penggunaan pemancar UHF untuk menjangkau daerah sasaran yang sama jauhnya, diperlukan biaya investasi yang jauh lebih besar daripada menggunakan pemancar VHF. Hal ini sangat wajar karena untuk menjangkau sasaran tertentu pemancar UHF memerlukan daya yang 3 s/d 5 kali lebih besar daripada daya pemancar VHF. G. Kualitas Kualitas hasil pencaran dari pemancar VHF dibandingkan dengan kualitas hasil pancaran dari pemancar UHF adalah sama asalkan keduanya memenuhi persyaratan dan spesifikasi yang telah ditentukan. Perbedaan yang mungkin terjadi tudak akan dapat dilihat oleh mata dan didengar oleh telinga, tetapi hanya dapat diketahui dengan mengunakan alat ukur. Tidak adanya perbedaan kualitas penerimaan gambar dan suara dari pemancar televisi VHF dan UHF ini barangkali dapat ditanyakan kepada yang sempat melihat siaran televisi Singapore, Malaysia, Jepang ataupun Jerman, dimana perbedaan kualitas penerimaan siaran televisi VHF dan UHF tidak dapat di indentifikasi.Berdasarkan peraturan internasional yang berkaitan dengan pengaturan penggunaan frekwensi (Radio Regulation) untuk penyiaran televisi pada pita frekwensi VHF dan UHF. Sesuai dengan sistem pertelevisian yang dianaut oleh indonesia yaitu CCIR B dan G maka penggunaan frekwensi tersebut telah diatur sebagai berikut :VHF band I : saluran 2 dan 3VHF band III : saluran 4 s/d 11VHF band IV : saluran 21 s/d 37VHF band V : saluran 38 s/d 70Kebijaksanaan penggunaan pita frekwensi VHF untuk TVRI dan UHF untuk swasta pada saat itu dilakukan dengan beberapa pertimbangan yang menguntungkan negara sebagai berikut :1. Jumlah saluran TV pada pita VHF yang jumlahnua hanya 10 saluran hampir seluruhnya telah digunakan untuk 200 stasiun pemancar terutama di pulau Jawa, maka pemancar TV swasta yang pertama dan berlokasi di Jakarata dialokasikan pada pita frekwensi UHF.2. Pemancar VHF lebih ekonomis dan tidak berbeda kualitasnya dengan pemancar TV UHF sangat cocok unruk stasiun penyiaran pemerintah yang terbatas dana pembangunannya.3. Kesinambungan pemeliharaan dan penggantian pemancar TVRI yang 70% adalah buatan LEN sangat didukung oleh hasil produksi LEN yang belum memproduksi pemancar UHF.4. TVRI terus memperluas jangkauannya sampai ke pelosok tanah air dimana saat itu masih banyak masyarakat di daerah yang belum mampu membeli pesawat TV berwarna dan pada saat itu pesawat hitam putih hanya dapat menerima saluran VHF.